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Abstract Bovine seminal ribonuclease (RNase) diverged from 
pancreatic RNase after a gene duplication ca. 35 million years 
ago. Members of the seminal RNase gene family evidently 
remained as unexpressed pseudogene for much of its evolutionary 
history. Between 5 and 10 million years ago, however, after the 
divergence of kudu but before the divergence of ox, evidence 
suggests that the pseudogene was repaired and expressed. 
Intriguingly, detailed analysis of the sequences suggests that 
the repair may have involved gene conversion, transfer of 
information from the pancreatic gene to the RNase pseudogene. 
Further, the ratio of non-silent to silent substitutions suggests 
that the pancreatic RNases are divergently evolving under 
functional constraints, the seminal RNase pseadogenes are 
diverging under no functional constraints, while the genes 
expressed in the seminal plasma are evolving extremely rapidly 
in their amino acid sequences, as if to fulfil a new physiological 
role. 
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1. Introduction 

New biomolecular function is believed to arise, at least in 
recent times, largely through recruitment of established pro- 
teins to play new roles following gene duplication [1,2]. Under  
one model, one copy of a gene continues to divergently evolve 
under  constraints dictated by the ancestral function. The du- 
plicate, meanwhile, is unencumbered by a functional role, and 
is free to search protein "structure space". It may eventually 
come to encode new behaviors required for a new physio- 
logical function, and thereby confer selective advantage. 

This model contains a well recognized paradox. Because 
duplicate genes are not  under  selective pressure, they should 
also accumulate mutat ions that render them incapable of en- 
coding a protein useful for any function. Most duplicates 
therefore should become pseudogenes, inexpressible genetic 
information (" junk D N A "  [3]) in just  a few million years 
[4,5]. This limits the evolutionary value of a functionally un- 
constrained gene duplicate as a tool for exploring protein 
"structure space" in the search of new behaviors that might 
confer selectable physiological function. 

Ribonucleases (RNases) offer an interesting system to study 
how new function arises in proteins [6]. RNase A is a well 
known member  of this family expressed in the pancreas of ox, 
where it serves a role in the intestine digesting R N A  arising 

*Corresponding author. Fax: (41) (1) 632 1170. 
E-mail: benner@chem.ethz.ch 

from bacteria fermenting in the first stomach of the ox [7]. Ox 
also contains a homologous RNase, 23 amino acids different, 
expressed in the seminal plasma, where it constitutes some 2% 
of total protein [8]. Seminal RNase has evolved to become a 
dimer with composite active sites. It binds tightly to anionic 
glycolipids [9-12], including seminolipid, a fusogenic sulfated 
galactolipid found in bovine spermatozoa [13]. The ancestral 
RNase does not  bind seminolipid. Further,  seminal RNase 
has immunosuppressive and cytostatic activities that are not  
displayed by the ancestral RNase [14,15]. 

Laboratory reconstructions of ancient RNases [16] have 
suggested that each of these traits was not present in the 
most recent common ancestor of seminal and pancreatic 
RNase, but  rather arose in the seminal lineage after the diver- 
gence of these two protein families. To learn more about  how 
this remarkable example of evolutionary recruitment oc- 
curred, we have analyzed RNase genes from peccary (Tayassu 
pecari), Eld's deer ( Cervus eldi), domestic sheep ( Ovis aries), 
oryx (Oryx leueoryx), saiga (Saiga tatarica), yellow-backed 
duiker ( Cephalophus sylvicultor), lesser kudu ( Tragelaphus im- 
berbis) and Cape buffalo (Syneerus caffer caffer), diverging 
approximately in that order within the mammal  order Artio- 
daetyla [17,18]. These complement the genes for ox pancreatic 
RNase [19], seminal RNase from ox (Bos taurus) [20], and 
giraffe (Giraffa camelopardalis) [21] and hog deer (Beintema, 
personal communicat ion) (Figs. 1 and 2). 

2. Materials and methods 

Spermatozoa were isolated by centrifugation from the respective 
seminal plasmas, obtained from the collection of the Center for Re- 
production of Endangered Species and incubated overnight in a buffer 
containing SDS and proteinase K [22]. The derived genomic DNA 
was amplified in a 50 ~tl reaction volume containing: 2 mM MgC12, 50 
mM KCI, 10 mM Tris/HCl (pH 9.0), 0.1% Triton X-100, 0.2 mM 
dNTP's, 2 U Taq polymerase (Promega), 50 pmol primers hybridizing 
to codons 5-14 in the 5'-region and to codons 119 124 at the 3'-end 
of BS-RNase, and 200 ng genomic DNA. PCR reaction conditions: 
1 min 95°C, 2 rain 52°C, 50 s 72°C, 3 cycles and 8 min 72°C [23]. The 
PCR fragments of saiga and kudu were cloned in a pUC19 plasmid 
using T4 DNA Ligase (NEB) in a 1 × ligation buffer: 50 rnM Tris/ 
HC1 (pH 7.8), 10 mM MgC12, 10 mM DTT, 1 mM ATP, 25 ~g/ml 
BSA at 14°C overnight [19]. The PCR products were analysed either 
by direct sequencing (USB-kit) or by start and reverse primers 
(Synthesizer ABI, 380A) [24]. 

Seminal plasma was also tested for RNase activity using a zymo- 
gram spot assay [25]. Sample (1 Ixl) was placed on a 1% agarose gel 
(10 mM Tris-HC1, pH 7.5) containing poly(C) (0.3 mg/ml). The gel 
was incubated at 37°C for 30 min, then stained with Tris-HCl buffer 
(10 raM, pH 7.5) containing toluidine blue (2 mg/ml), and then de- 
stained with water. The concentration was calculated assuming a spe- 
cific activity identical to RNase A in these assays. Proteins in the 
seminal plasma were also resolved by gel electrophoresis and identi- 
fied by Western blotting [19]. 
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3. Results and discussion 

Seminal RNase genes are distinguished from their pancrea- 
tic cousins by several "marker" substitutions introduced early 
after the gene duplication, including Pro 19, Cys 32, and Lys 
62. By this standard, as well as by parsimony analysis, the 
genes from saiga, sheep, duiker, kudu, and Cape buffalo were 
all assigned to the seminal RNase family. No evidence for a 
seminal-like gene could be found in peccary. Thus, these data 
are consistent with a parsimony analysis of previously pub- 
lished genes that places the gene duplication separating pan- 
creatic and seminal RNases ca. 35 million years before present 
[6], and the divergence of giraffe preceding the divergence of 
sheep, saiga, duiker, kudu, Cape buffalo and ox, in this order, 
consistent with mitochondrial sequence data [18]. 

Sequence analysis shows that the seminal RNase genes from 

both kudu and Cape buffalo almost certainly could not serve 
physiological functions by encoding a folded stable protein. A 
single base deletion disrupts codon 114 in kudu, creating a 
frame shift. A deletion introducing a frame shift and involving 
codons 54~57 is found in the Cape buffalo gene. This implies 
that these are pseudogenes. Breukelmann et al. [21] noted that 
the seminal RNase gene in giraffe might also be a pseudogene, 
based on the rate of sequence divergence. Lesions have now 
evidently been found in these two genes as well (Beintema, 
personal communication). 

To show that these seminal genes were indeed not expressed 
in semen, plasmas from 15 artiodactyls were examined (ox, 
forest buffalo (Syncerus caffer nanus), Cape buffalo, kudu, 
sitatunga (Tragelaphus spekei), nyala (Tragelaphus angasi), 
eland (Tragelaphus oryx), Maxwell's duiker (Cephalophus 
monticola maxwelli), yellow-backed duiker, suni (Neotragus 

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 
S S T S A A S S S N Y C N Q M M K S R N L T K D R C K P V N T F V H ox 
TCCAGCACTT~GCAGCTCCAACTACTGTAACCAGATGATGAAGAGCCC~AACCTGACCAAAGATCGATGCAAGcCAGTGAACACCTTT~C pancreatic 

A S T S N Y C N Q M M K S R N L T Q N R C K P V N T F V H oryx 
GCCAGCACGT~CTACTGCAACCAGATGATGAAGAGC CC~AACCTGACCCAAAATCGATGCAAGCCAGTGAACACCTTTGTGCAC pancreatic 

T S R N L T Q D R C K P V N T F V H giraffe 
ACAAGCCC~AATCTGACCCAAGATCGATGCAAGCCGGTGAACACCTTTGTGCAT pancreatic 

F C R K M T Q G K C K P V N T F G H giraffe 
TTCTGC CGGAAGATGACCCAGGGGAAATGCAAGCCAGTGAACACTTTTGGTCAC seminal 

S G S S P S S N S N Y C N V M M F C R K M T Q G K C K P V N T F A H saiga 
T CTGGCAGCTCCCCCAGCAGCAACTCCAACTACTGCAACGTGATGATGTTCT GC CGGAAGATGACTCAGGGGAAATGCAAGCCAGTGAACA~T seminal 

S G S S P S S N S N Y C N L M M F C R K M T Q G K C K L V N T F V H duiker 
TCT GGCAGCTCCCCCAGCAGCAACTCCAACTACTGCAACCTGATGATGTTCT G C C G G A A G A T G A C T C A G G G G A A A T ~ ~ ~ T  se~alnal 

S G S S P S S N S N Y C N L M M F C Q K L T E G K G K P V N T F V H kudu 
T CTGGCAGCTCCCCCAGTAGCAACTCCAACTACTGCAACCTGATGATGTTCTGCCAGAAGTT GACCGAGGGGAAAGGCAAGCCAGTGAACA~GTGCAT seminal 

S G S S P S S N S N Y C N L M M F C R K M T Q G K C K P V N T F V H buffalo 
TCTGGCAGCTCCCCCAGCAGCAACTCCAACTACTGCAACCTGATGATGTTCTGCCGGAAGATGACCCAGGGGAAAT GCAAGCCAGTGAACACCTTTGTGCAT seminal 

S G N S P S S S S N Y C N L M M C C R K M T Q G K C K P V N T F V H ox 
TCTGGCAACTCCCCCAGCAGCAGCTC•AACTACTGCAACCTGATGATGTGCTGCCGGAAGATGACCCAGGGGAAATGCAAGCCAGTGAACACCTTTGTGCAT seminal 
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E S L A D V Q A V C S Q K N V A C K N G Q T N C Y Q S Y S T M S I T D ox 
GAGTCCCTGGCT GATGTCCAGGCCGTGTGCTCCCAGAAAAATGTTGCCr GCAAGAATGGGCAGACCAATTGCTACCAG AGCTACTCCACCAT GAGCATCACCGAC pancreatc 

E S L A D V Q A V C S Q K N V A C K N G Q T N C Y Q S Y S T M S I T D oryx 
G A G T C C ~ T G T C C A ~ C C C A G A A A A A T G ~ G  AATGGGCAAACCAATTGCTACCAGAGCTACTCCACCATGAGCATCACAGAC pancreatic 

E S L A D V Q A V C S Q K N V A C K N G Q T N C Y Q S N S A M S I T D giraffe 
GAGTCCCTGGCTGATGTCCA GAAAAATGTT~G AATGGGCAGACTAACTGCTACCAGAGCAACTCTGCCATGAGCATCACAGAC pancreatic 

E S L A N V Q A V C S Q K K V I C K N G L S N C Y Q S N S A I H Y T D giraffe 
GAGTCCCTGGCCAATGTCCA~GT GTGCT~GAAGAAAGT CATCT GCAAG AATGGGCTGT CCAACTGCTACCAG AGCAACT~TTCATTATACAGAT seminal 

E F L A D V Q A V C S Q K K V T C K N G Q T N C Y Q S N S A M S I T D saiga 
GAGTT CCTGGCTGATGTCCAGGCTGTGTGCT CCCAGAAGAAAGTCACCT GCAAG AATGGGCAGACCAACTGCTACCAGA~~TGA~T~C seminal 

E S L A D V K A V C S Q K K V A C K N G Q T N C Y Q S N S A M R I T D duiker 
GAGTCCCTGGCCGATGTCAAGGCCGTGTGCTCCCAGAAGAAAGTCGCCTGCAAG AATGGACAGACCAACTGCTACCAG A G C A A ~ ~ T ~ C  seminal 

E S L A D V K A V C S R K K V T C K N G Q T N C Y Q S N S A M R I T K kudu 
GAGTCCCTGGCCC~TGTTAAGGCTGT GTGT TCC~GGAAGAAAGTCACTT GCAAG AATGGGCAGACCAACTGCTACCAG AGCAA~ ~ T ~ T ~ G  seminal 

E S L A D DEL C S Q K K V T C K N G Q T N C Y Q S K S T M R I T D buffalo 
G A G T C G ~ T G  ........... TGCTCCCAGAAGAAAGT CACTTGCAAG AAT GGGCAGACCAACTGCTACC~GAGCAAATCCACCATGCGCATCACAGAC seminal 

E S L A D V K A V C S Q K K V T C K N G Q T N C Y Q S K S T M R I T D ox 
GAGTCC CTGGCCGATGTTAA~TGCTCCCAGAAGAAAGTT ACTTGCAAG AAT GGGCAGACCAACTGCTACCAGAGCAAATCCACCATGCGCATCACAGAC seminal 
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C R E T G S S K Y P N C A Y K T T Q A E K H I I V A C E G N P Y V P V ox 
TGCYIGT GAGACCGGCAGCTCCAAGTACCCCAACTGT GCCTACAAGACCACCCAG GCAGAGAAACACATCATTGTGGCT T G T G A G G G A A A ~ A ~  pancreatic 

C R E T G S S K Y P N oryx 
TGCCGT GAGA~GCTCCAAGTACCCCAAC pancreatic 

C R E T G N S K Y P N C A Y Q T T Q A E K H I I V A C E G N P giraffe 
TGCCGCGAGA~CTCCAAGTACCCCAACTGTGCCTACCAGACCACCCAG GCAGAGAAACACATCATTGTGGCT TGCGAGGGAAACCCG pancreatic 

C R K T G S S N Y P N C A Y K T T R A E K R I I V A C E G N L giraffe 
TGCCGCAAGACTGGCAGCTCAAACTACCCCAACTGTGCCTACAAGACCACCCGG GCAGAGAAACGCATCATAGTGGCTTGT GA~CCTG seminal 

C R Q T G S S K Y P N C A Y K T T Q A Q K H I I V A C E G N P Y V P V saiga 
TGCCk3CCAGACT GGCAGCTCCAAGTACCCC AACTGCGCCTACAAGACCACCCAG GCGCAAAAACACATCAT AGTGGCT TGTGAGGGAAACCCGTATGTGCCAGTC seminal 

C R Q T G S S K Y P N C T C K T T R A E K H I I V A C E G K ? F M P duiker 
TGCCGC CAGACTGGCAGCTCCAAGTACCCCAACTGCACCTGCAAGACCACCCGG GCGGAGAAACACATCATAGTGGCTT~~G~T~ seminal 

C ~ E T ~ • ~ ~ I" F N C A T K Y T Q" V--E K ~ i i V A -~--E G 'k ~ DEL- - "~ "" "kudu "" 
TGCCGCGAGACTGGCAGCTCCAAGTACCCCAACTGTGCCTACAAGACCACCCAG GT GGAGAAACGCATCATAGTGGCT TGTGAGGGTAAA - CCKLKCATGCGGGTC semtlnal 

C R E T G S S K Y P N C A Y K T T H V E K R I I V A C A G K P Y V P X buffalo 
TGCCGC GAGACTGGCAGCTCCAAGT ACCCCAACT GCGCCTACAAGACCAC~GT GGAGAAA~TCATAGTGGCT TGTGCAGGTAAACCGTACGTGCCAGTX semtlnal 

C R E T G S S K Y P N C A Y K T T Q V E K H I I V A C G G K P S V P V ox 
TGCCGT GAGA~GCTCCAAGTACCCCAACTGCGCC~ ACAAGACCACCCAG GTGGAGAAACACATCATAGT GGCT T G T G G C G G T ~ T ~ C  seminal 

Fig. 1. Sequences of the genes and the encoded polypeptide chain (using the one letter code) of members of the pancreatic and seminal RNase 
families. Published RNase sequences are from giraffe [21], ox pancreas [19] and ox seminal plasma [20]. 
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Fig. 2. A phylogenetic tree showing the relationship between artio- 
dactyl (even-toed ungulate) organisms discussed here. The organisms 
contributing sequences discussed in the text are shown in bold. 

moschatus), sable antelope (Hippotragus niger), impala (Aepy- 
ceros melampus), saiga (Saiga tatariea), sheep ( Ovis aries), and 
Eld's deer). Catalytically active RNase was not detected in the 
seminal plasma in significant amounts in any artiodactyl 
genus diverging before the Cape buffalo, except in Ovis. In- 
dependent mutagenesis experiments showed that the proteins 
encoded by these genes, all carrying a Cys at position 32, 
should form dimers [9-12]. By Western blotting, however, 
only small amounts of a monomeric, presumably pancreatic 
RNase, were detected in these seminal plasmas. In contrast, 
the seminal plasmas of sheep, forest buffalo, cape buffalo and 
ox all contained substantial amounts of Western blot-active 
RNase. The seminal plasma of ox was the only sample found 
to contain significant amounts of a band on a denaturing, 
non-reducing gel corresponding to the seminal RNase dimer. 

This result was unexpected on paleontological grounds, be- 
cause the Ovis genus diverged from the lineage leading to 
modern ox long before other genuses lacking seminal RNase 
diverged. To learn whether RNase in the Ovis seminal plasma 
is derived from a seminal RNase gene, the RNase from goat 
seminal plasma was isolated, purified, and sequenced by tryp- 
tic cleavage and Edman degradation. Both Edman degrada- 
tion (covering 80% of the sequence) and MALDI mass spec- 
troscopy showed that the sequence of the RNase isolated from 
goat seminal plasma is identical to the sequence of its pan- 
creatic RNase (data not shown) [6,9]. This shows that the 
RNase in Ovis seminal plasma is not expressed from a seminal 
RNase gene, but rather from the Ovis pancreatic gene. To 
confirm this conclusion, a fragment of the seminal RNase 
gene from sheep was sequenced, and shown to be different 
in structure from the pancreatic gene (data not shown). The 
fact that the Western-blot active bands observed in Cape and 
forest buffalo had mobilities on a denaturing gel consistent 

with a glycosylated pancreatic monomeric RNase A, but not 
a dimeric seminal RNase as found in ox, suggests that these 
also might be derived from the pancreatic RNase A lineage. 

These results might be consistent a model that assumes that 
seminal RNase gained a physiological function immediately 
after duplication, that this function was retained throughout 
the divergent evolution, is retained in modern ox, but was lost 
in all other species, including kudu and Cape buffalo. This 
would require, however, that this function was lost indepen- 
dently multiple times in different lineages. 

More likely, however, is a model where the duplicate 
RNase gene initially served no function, and therefore suf- 
fered damage, such as that reflected in the modern kudu 
and Cape buffalo. The gene was then resurrected after the 
divergence of Cape buffalo in the lineage leading to modern 
ox. This resurrection must have been very recent. Clades con- 
taining the saiga, duiker and sheep are known in the early 
Miocene (23.8-16.4 million years before present), while clades 
containing the kudu and cape buffalo are known in the late 
Miocene (11.2-5.3 my bp), implying that the pseudogene ac- 
quired new function only within the past few million years, 
possibly more recently. It is intriguing to ask whether the 
domestication of the ox is related to the emergence of seminal 
RNase as a functioning protein. 

The question then arises as to whether the seminal RNase 
gene indeed has a function in modern ox. An observation 
relevant to this question concerns the ratio of non-silent and 
silent substitutions in these gene families. In unexpressed 
seminal RNase sequences, the ratio of non-silent to silent 
substitutions averages 2:1. This is close to that expected for 
random substitution in a gene serving no selected function, 
and is consistent with the model that these seminal RNases 
are pseudogenes. In contrast, the average ratio is less than 1 : 1 
with pancreatic RNases, consistent with the proposal that 
pancreatic RNases are functioning genes where amino acid 
replacements are constrained by selective pressures. Most re- 
markable, however, is the ratio of non-silent to silent substi- 
tutions observed when comparing the expressed ox seminal 
RNase with its nearest unexpressed homologs, from Cape 
buffalo and kudu. This ratio is ca. 4:1. This is expected 
only for a pseudogene emerging after searching protein 
"structure space" to perform a new function, with amino 
acid substitutions rapidly introduced to provide new selected 
properties. Interestingly, the introduction of Cys 31 is evi- 
dently associated with the resurrection of the seminal RNase 
gene. 

How was this pseudogene resurrected? It is difficult at this 
point to say. It is interesting to note that in the region of the 
kudu deletion, the sequence of the expressed seminal RNase 
gene in ox is quite similar to the sequence of the ox pancreatic 
gene, more than it is to the kudu seminal RNase pseudogene, 
and that this similarity extends some 70 base pairs into the 3'- 
untranslated region (with 62 of the 70 nucleobases, 89%, iden- 
tical). We may speculate that information from the pancreatic 
gene may have been used to repair a damaged ancestral semi- 
nal RNase gene, perhaps by a gene conversion event [26-29]. 
This may be the first example of gene conversion being used 
to create new physiological function in paleogeological evolu- 
tion, and it will be interesting to test this hypothesis with more 
sequence data. 
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